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sary to the existence of the SUSY breaking vacua) are dynamically stabilized. One crucial
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of Kitano, Ooguri and Ookouchi.
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1. Introduction

There has been a renaissance in the study of metastable supersymmetry breaking vacua in

string theory and field theory in the past several years. Several of the examples are stringy

constructions which involve brane dynamics and/or fluxes in a nontrivial gravitational

background [1 – 7]. There are also purely field-theoretic constructions, like the Intriligator-

Seiberg-Shih (ISS) models [8] where strong/weak coupling dualities [9] allow one to find

such states, or the retrofitted models [10] where canonical theories like O’Raifeartaigh or

Polonyi models can be coupled to additional dynamics in a way that naturally produces

an exponentially small SUSY breaking scale. These states have potential applications

both in understanding the existence and properties of stable non-supersymmetric string

compactifications [11 – 13] (for recent reviews see [14, 15]), and in building realistic models

of gauge-mediation [16] or sequestered, high-scale SUSY breaking [17]. It is natural to

think that via AdS/CFT duality [18] or brane engineering [19], one can sometimes relate

the stringy and field theoretic constructions. Indeed, many groups have recently engineered

various D-brane field theories which exhibit dynamical SUSY breaking (DSB) and reduce

to known DSB field theories in the decoupling limit [20 – 29].

– 1 –
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Here, we continue our investigation [25] into the possible relations between ISS-like

states in field theory, and SUSY-breaking states where SUSY is broken at the end of a

“warped throat,” as in [3] (where SUSY was broken by anti-D3 brane probes at the tip of

a warped, deformed conifold [30]). At a qualitative level, it is natural to think that SUSY

breaking at the end of a warped throat is AdS/CFT dual to dynamical supersymmetry

breaking. Then one should try to interpret the SUSY breaking states involving warped

antibranes, which can tunnel to supersymmetric states of the same gravitational system [3],

as metastable states in the dual SUSY field theory. While it is not necessary that such

a correspondence should hold (since non-supersymmetric vacua are not protected upon

extrapolation in the ’t Hooft coupling gsN), it would be interesting and suggestive to find

examples where such states can be argued to exist both in the gravitational system and

the field theory dual.

In [25], we argued that the gauge/gravity duals derived by studying fractional branes

in simple quotients of the conifold are a natural place to find such a correspondence. In a

particular Z2 orbifold of the conifold, we were able to realize a close relative of SUSY QCD

where the small mass parameter of the ISS models is dynamically generated, and where

the dual gravitational system plausibly admits metastable anti-brane states. However,

that work left several open questions. Firstly, the SQCD model that could be realized had

Nf = Nc, while it is in the free magnetic range Nc + 1 ≤ Nf < 3
2
Nc that one is really

confident of the existence of the metastable states in the field theory. Secondly, because

we wish to dynamically generate the small mass parameter of the ISS models, we must

take care to ensure that the dynamical masses are stabilized against relaxation to zero or

infinity. In the models of [25], this delicate question rested entirely on (largely unknown)

properties of the Kähler potential.

In this paper, we argue that a simple variant of the model of [25] solves both of these

problems. By considering other orbifolds of the conifold, we are able to find models where

we can reach the free magnetic regime necessary to prove existence of the ISS vacua, and

where we can argue that the superpotential itself helps to stabilize the dynamical quark

masses in the range where SUSY breaking occurs. More precisely, the models we construct

have Nf = Nc + 1. As an added bonus, our model shares a nice feature with the model of

Kitano, Ooguri and Ookouchi [27]: the quiver superpotential naturally comes with terms

that break the R-symmetry of the original ISS models, which is problematic in model

building applications (as it forbids a gaugino mass).

In the rest of this section, we introduce our model. Its field theory dynamics is analyzed

in section 2, where we show how an effective massive SQCD arises in a given corner of its

moduli space. An important role is played by a stringy instanton generated contribution to

the effective superpotential, whose origin we discuss in section 3. In section 4 we prove that

the quark masses can be dynamically stabilized, and in section 5 we estimate the lifetime

of the metastable vacua. In section 6, we briefly discuss the gravity dual IIB description

(involving fluxes and branes in the deformed geometry). We also present a IIA T-dual of

the IIB picture, where the gauge theory arises from a configuration of NS 5 branes and D4

branes. These descriptions allow one to visualize many (though not all) aspects of the field

theory dynamics, and in particular, make it obvious that the metastable SUSY-breaking

– 2 –



J
H
E
P
0
6
(
2
0
0
7
)
0
1
7

3

4

1 2

6

5

Figure 1: The quiver describing the field content of the gauge theory at the tip of the non-chiral

Z3 orbifold. The ranks of the gauge groups can be chosen arbitrarily.

vacua are dual to models which contain anti-branes. We conclude in section 7.

1.1 The structure of the model

The models we would like to analyze are obtained by considering (fractional) D3 branes at

the tip of a non-chiral ZN orbifold of the conifold, which is nothing but a straightforward

generalization of the system considered in [25] for the case N = 2.

The corresponding quiver gauge theory admits 2N gauge factors and 4N bifundamental

chiral superfields Xij interacting via the following quartic superpotential

W = h
2N
∑

i=1

(−1)i+1Xi,i+1Xi+1,i+2Xi+2,i+1Xi+1,i , (1.1)

where the index i is understood mod(2N).

Because the quiver is non-chiral, we can consistently assign arbitrary ranks to the

quiver nodes, which suggests that there should be 2N − 1 independent fractional branes

one can define. This is indeed mirrored in the geometric structure of the singularity, which

admits 2N −1 independent shrinking 2-cycles the branes can wrap. In a given basis, which

will be relevant later, one obtains a natural classification into N deformation fractional

branes and N − 1 N = 2 fractional branes, following the definition proposed in [31]. We

remind the reader that deformation branes correspond to isolated nodes in the quiver (and

hence gauge groups with no matter) and lead to confinement, while N = 2 branes arise

from occupying two connected nodes, which yields a product of two SQCD theories with

Nf = Nc, and hence have a moduli space of vacua.

As we are going to show, for our present purposes it is enough to take N = 3 (any ZN

with N > 3 naturally works in the same way). Therefore, from now on we stick to this

case, for simplicity. This specific Z3 quotient admits five shrinking 2-cycles. Two of them

see, locally, a C
2/Z2 singularity. The other three are dual (via geometric transitions) to

compact 3-cycles Ai (i = 1, 2, 3) which can be made finite by a complex deformation. The

corresponding quiver is shown in figure 1.

We would like to consider the gauge theory arising from the following assignment of

ranks in the quiver

(Nc , Nc , Nc , 1, 0 , 0) . (1.2)

– 3 –
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Figure 2: The quiver of the theory (1.2).

In terms of fractional branes, this may be viewed as Nc N = 2 branes at nodes 1 and 2,

Nc deformation branes at node 3 and another single deformation brane at node 4 (this

definition is basis-dependent, of course). The“SU(1)” fourth node is not actually a gauge

group. Its interpretation is that X34 and X43 transform purely as fundamental and anti-

fundamental representations of node 3, respectively. The corresponding quiver is depicted

in figure 2.

As we shall show, this system, whose dynamics we are going to study in detail, reduces

exactly (in a region of the moduli space to be specified below) to massive SU(Nc) SQCD

with Nf = Nc+1 massive (but light) flavors, and therefore admits both the supersymmetric

and the metastable non-supersymmetric vacua of that theory. Hence, this system provides

a string embedding of an ISS model. Moreover, it has some additional virtues: the small

flavor masses are dynamically generated (and stabilized), it is possible to give a simple

gravity dual interpretation of the metastable non-supersymmetric vacua, and R-symmetry

is explicitly broken (which could be useful in any model-building applications).

2. The dynamics of the model

The quiver gauge theory we are going to analyze is the one depicted in figure 2. This

theory has a superpotential of the form

W = h(X12X23X32X21 − X23X34X43X32) + mX43X34 . (2.1)

As already discussed, the two quartic terms follow from the conifold by standard orbifold

techniques. The mass term for X34 and X43 is generated by a stringy instanton. We

postpone discussion of the relevant instanton to section 3, and we proceed to analyze the

above superpotential. The quartic coupling h has the dimensions of an inverse mass, and

is inversely proportional to the UV scale generating the non-renormalizable interaction. In

this context, it is natural to take h ∼ 1/M∗
s . Here, M∗

s indicates the string mass scale

effectively warped down to a lower value due to the RG flow, which manifests itself as a

duality cascade. For the field theory interpretation to be valid, we need M∗
s to be bigger

than any of the dynamical scales of the gauge groups involved in the quiver.

To start analyzing the gauge theory, we will make some assumptions about the scales

of the gauge groups on every node. Node 3 is the main node where the ISS-like SQCD

dynamics takes place. Node 2 acts as a subgroup of the flavor symmetry, broken as SU(Nc+

1)× SU(Nc + 1) ⊃ SU(Nc + 1) ⊃ SU(Nc). Accordingly, we will take its dynamical scale Λ2

to be (much) smaller than the others, so that this gauge group can be effectively considered

as classical.

Node 1, which has a number of flavors which equals the number of colors, undergoes

confinement so that its effective dynamics is described in terms of mesons and baryons.

– 4 –
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The mesons are going to supply mass terms for some of the flavors of node 3, through

the superpotential couplings in (2.1), much as in [25]. These masses are subject to the

constraint on the deformed moduli space of node 1. In particular, we will need the scale

Λ1 to be such that those masses are still lower than the scale of the SQCD node, Λ3. The

additional mass m will be larger than these Nc masses, but still smaller than Λ3. We will

explain later how this parameter range can be obtained.

This model is quite similar to the one in [27]. One difference is that all the small

parameters are generated dynamically. In addition, this model arises naturally at a fairly

simple Calabi-Yau singularity.

Assuming now that node 1 is confining, the tree level superpotential reads

W = h(M22X23X32 − X23X34X43X32) + mX43X34 , (2.2)

where we have defined M22 = X21X12. This superpotential is not quite complete: we should

really implement the constraint relating the mesons and the baryons of node 1 through the

introduction of a Lagrange multiplier. We delay that to later on. Let us now assume that

the interactions are such that the mesonic and baryonic branches of node 1 decouple, and

in particular that when the meson matrix has maximal rank the baryons are required to

vanish – we will argue that this is the case in section 4. For the time being, we assume that

node 1 is on the mesonic branch, where the constraint describing the quantum-deformed

moduli space reads

det M22 = Λ2Nc

1 . (2.3)

This constraint is necessary for the generation of dynamical masses but does not fully fix

the eigenvalues of M22. In the non-supersymmetric vacua, their stabilization occurs at

tree-level as we explain shortly. At the stable point, the VEV of M22 is proportional to

the identity matrix. Hence we see that in the effective SQCD theory at node 3, we have

Nc flavors of mass ∼ hΛ2
1 and 1 flavor of mass m. We will take the latter to be the heavier

one, so that hΛ2
1 < m.

Therefore, along this branch the theory on node 3 with superpotential (2.2) is nothing

but SQCD with Nf = Nc + 1 massive flavors, together with a quartic coupling (which is

irrelevant in the IR). Integrating out the flavors, we obtain pure SU(Nc) SYM characterized

by a dynamical scale

Λ3Nc

L = Λ2Nc−1
3 hNc detM22 m = Λ2Nc−1

3 (hΛ2
1)

Ncm . (2.4)

Implementing the constraint on the deformed moduli space of node 1 with a Lagrange

multiplier in an effective superpotential, it is easy to see that we indeed have a moduli space

of supersymmetric vacua where M22 has non zero VEV, while the baryons are vanishing.

When taking into account that node 2 is actually gauged, we see that at low-energies

the moduli space will be described by CNc−1 together with a residual U(1)Nc−1 gauge

symmetry.

We now move on and show that our theory also has meta-stable, SUSY breaking vacua.

Since node 3 has Nf = Nc + 1, its low-energy dynamics is governed by a theory of mesons

and baryons. This case can actually be seen as a limiting case of Seiberg duality, where

– 5 –
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the dual magnetic gauge group is a trivial SU(1), and the dual quarks are nothing but

the baryons of the electric theory. In the following, we will adopt this terminology. The

bifundamentals are combined into effective mesons as Xi3X3j = Λ3φij , and the dual quarks

are labeled Yi3 and Y3i. The superpotential is

W = (hΛ3)(M22φ22−Λ3φ24φ42)+mΛ3φ44−φ22Y23Y32−φ44Y43Y34+φ24Y43Y32+φ42Y23Y34 .

(2.5)

Note that we have rescaled the mesons to canonical dimension using the scale Λ3. Ac-

cordingly, the cubic terms generated by the duality have a coupling of O(1), which we set

to one (shifting the undetermined constant to the normalization of the canonical Kähler

potential). Strictly speaking, we should also add a term linear in the determinant of the

meson matrix, but it is highly irrelevant in the IR (and to our considerations).1 It is easy

to see that the above model of mesons and dual quarks would have, in the absence of the

φ24φ42 coupling, an accidental IR U(1)R symmetry. The R charges would be 2 for the

mesons and 0 for the dual quarks, as in an O’Raifeartaigh model. The quadratic coupling

in the mesons which arises naturally in the present model provides an explicit breaking of

this R-symmetry.

This theory is now amenable to an analysis very similar to [8, 27]. There is supersym-

metry breaking by the rank condition. The F auxiliary field that vanishes is the one related

to the more massive flavor, i.e. the F-term of φ44. On the other hand, the F-components

of φ22 are non-vanishing. As a consequence, there is a tree level vacuum energy given by

Vtree = |hΛ3|2
Nc
∑

i=1

|Mi|2 = Nc|hΛ3Λ
2
1|2 , (2.6)

where we obtain the final result by extremizing on the eigenvalues of the matrix M22 given

the constraint on its determinant. We are going to show later that indeed the constraint

on the determinant is not destabilized by baryonic VEVs.

A standard analysis of this model shows that it is a sum of O’Raifeartaigh models

with an additional coupling m24 = hΛ2
3, which is the one quadratic in the two mesons φ24

and φ42. As we will discuss in section 4, φ22 gets a non-zero VEV due to the one-loop

potential (see also [27]). This VEV is directly related to the presence of the quadratic

meson coupling m24, so that we can actually estimate it as

|φ22| ∼ |hΛ2
3| . (2.7)

As noted in [27], the vacua analyzed here are unstable if the size of m24 exceeds the

larger flavor mass. Here this bound reads |hΛ2
3|2 < |mΛ3|, or in other words (recall that

h = 1/M∗
s )

(

Λ3

M∗
s

)2

<
m

Λ3

. (2.8)

Note that all these relation must be taken with a grain of salt, since there are factors of

O(1) that we are not retaining (most of which are non-calculable anyway).

1It does play a role if we want to recover the SUSY vacua in the low-energy picture.
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All other pseudomoduli are lifted by the one-loop potential, and acquire a non-

tachyonic mass.

This shows that the present model has metastable supersymmetry breaking vacua,

provided we can show that there is no instability towards turning on baryonic VEVs at

node 1. We demonstrate in section 4 that this is the case, in an appropriate regime of

parameters.2

3. A mass term generated by a stringy instanton

Before analyzing in detail the stability of the model, we have to explain how the mass term

for the additional flavor is generated.

It turns out that somewhat novel stringy instanton effects which have recently been

investigated in several other contexts [32 – 38] contribute corrections to W which depend on

gauge invariants that usually do not appear in the superconformal quiver superpotential.

Recall that these effects arise when Euclidean D branes wrap cycles corresponding to quiver

nodes which are not occupied by space-filling branes. In this respect, they are specific to

set ups with fractional branes. We now show that such an instanton generates the mass

term m.

To understand the instanton contributions, consider a D1 instanton (a Euclidean D1

or ED1 brane) wrapping node 5 of the quiver. It is BPS and preserves precisely 1/2 of

the N = 1 supersymmetry; acting on the instanton solution with the broken supercharges

then produces two fermion zero modes in the ED1 - ED1 open string sector. These are

the two fermion zero modes that are necessary to give rise to a contribution to the space-

time superpotential (we discuss the possibility of extra “accidental” zero modes at the

end of this section). Considering the extended quiver diagram including a node for the

instanton, there are also fermionic strings α, β stretching to node 4, in the (+,N4) and

(−, N4) representations of the U(1) × SU(N4) gauge group (in the present case we will

have N4 = 1). As follows from the computations in [32, 34], the fermionic spectrum in the

extended quiver is the same as it would be if the instanton were actually a space-filling

brane, except the fermions live in a different dimension. By the simple argument of [34],

we also expect that there are no bosonic zero modes in this sector. Bosons would arise

from NS sector strings, but the NS sector ground state energy receives a contribution from

the number of ND boundary conditions, which pushes the ground state energy above zero

in this configuration. The relevant part of the extended quiver is reported in figure 3.

In the instanton action, we expect a gauge invariant coupling

L = αX43X34β . (3.1)

In evaluating the instanton contribution to the 4d effective action, we should integrate over

the only two charged fermionic zero modes α, β. This yields a simple contribution to the

2In the model that we presented in [25] there is potentially such an instability. In that model the SQCD

node is in a confining rather than IR free regime, so that (non-calculable) corrections to the Kähler potential

are present, and make it difficult to determine what happens. The gravity dual description provides another

source of information; such an instability is not readily apparent there, but it is a complicated system which

would benefit from further study.
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Figure 3: The extended quiver describing the interaction between the fractional brane system and

a Euclidean D1 brane on node 5, represented by a square. The relevant coupling is a quartic one,

involving α, β, X34 and X43, (3.1).

superpotential

c X43X34 e−Area. (3.2)

where c is a dimensionful constant and the relevant area is the area of the curve corre-

sponding to node 5. We thus identify the mass term as m = c e−Area. If we reasonably

take c ∼ M∗
s , we see that it is not difficult to assume that the area of the cycle wrapped by

the instanton is such that m < Λ3. (Roughly that would amount to assume that Λ5 ≪ Λ3

if there was a gauge group on node 5.)

Now, a similar instanton on node 6, with fermionic strings stretching to node 1, pro-

duces another term in the superpotential. The gauge invariant coupling in the instanton

action is

L = αX12X21β . (3.3)

If we let a, b denote gauge indices at node 1 and f, g denote gauge indices at node 2, then

the gauge contractions in (3.1) give rise to αāX
af̄
12 X21,f b̄β

b. So performing the integral over

the α, β fermions, which are now a set of 2Nc zero modes, gives the contribution

c′BB̃ e−Area′ (3.4)

to the 4d effective theory, where c′ is similarly a dimensionful constant and the area is now

the one of the curve corresponding to node 6. The coupling (3.4) provides a mass term for

the baryons B = det X12 and B̃ = detX21 of node 1. We will see in the next section that

this term does not however play an important role in the stabilization of the baryons.

Let us end this section with a comment regarding a subtle point. With the above rea-

soning, the coefficients c and c′ have been determined up to a dimensionless number whose

precise value we cannot directly compute in our geometric set-up. A crucial ingredient

for such coefficients not to vanish involves the number of uncharged fermionic zero modes

on the ED1 brane. Before taking into account the quiver branes back-reaction, there are

four, since the ED1 is a 1/2 BPS state in the Calabi-Yau. While, as already discussed,

two zero modes are necessary to provide the chiral superspace integral for the superpo-

tential term (3.2), the other two would provide a dangerous vanishing contribution. Still,

one should take into account the full back-reacted closed string background, which includes

non-trivial fluxes. This background preserves only 4 supercharges out of the 8 preserved by

the CY, so that the instanton has only 2 zero modes associated to broken supersymmetries.

Then, at least in many backgrounds, it is reasonable to expect that the extra zero modes

get lifted by the interactions with other background fields. This is an interesting problem

in itself, but we leave it for further research. Instead, in order to provide a background

– 8 –
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where we can explicitly identify an object responsible for lifting the additional zero modes,

we can introduce orientifold planes in such a way that the instanton wraps a cycle that

is mapped to itself. In this way, half of the zero modes are projected out from the start.

One concrete embedding of our model in an orientifold that accomplishes this task, while

not spoiling all other nice features of our model, is described in appendix A. We therefore

conclude that the coefficient c is non-vanishing in many suitable models.3

4. Stabilizing dynamical masses

We have explained how our theory has metastable supersymmetry breaking vacua under

certain assumptions regarding the stability of the dynamically generated masses. An im-

portant question is whether the dynamical masses relax to zero by turning on expectation

values for the baryonic fields at node 1. We show in this section that these a priori danger-

ous directions are lifted because 〈φ22〉 6= 0. New superpotential interactions generated by

the D1 instanton wrapping node 6 of the quiver also contribute to stabilization, although

they are not the dominant effect.

We thus first sketch how the one-loop potential gives the crucial VEV to the field

φ22. We start from (2.5) and expand around the metastable vacuum. This is characterized

by VEVs for Y34, Y43 =
√

mΛ3 and, at tree level, by an arbitrary φ22. The latter is also

the field with non-vanishing F-terms. The superpotential for the fluctuations of the fields,

expanded about the vacuum, takes the form

W = m2
22φ22 − Y32φ22Y23 + m44φ24Y32 + m44φ42Y23 − m24φ24φ42 , (4.1)

In writing this down, we have dropped several fields: φ44, δY34 and δY43 do not feel SUSY

breaking at this order so will cancel out of the one-loop energy. The masses appearing

above are given by m2
22 = hΛ3Λ

2
1, m2

44 = mΛ3 and m24 = hΛ2
3. All fields have a canonical

Kähler potential.

It is straightforward to realize that the F-terms set φ22 to a diagonal form. Then, we

obtain just a superpotential for Nc decoupled O’Raifeartaigh like models. Each such model

has, besides the field with the non-zero F-term, 4 other fields. An important parameter is

the coupling m24 of the meson bilinear φ24φ42.

The tree level vacuum energy is just:

Evac = Nc |m22|4 . (4.2)

We had already noted that the eigenvalues of M22 are all trivially stabilized at their common

values [25].

To compute the one-loop vacuum energy of this model, we simply compute the bo-

son/fermion masses as a function of pseudo-moduli using

m2
0 =

(

W †acWcb W †abcWc

WabcW
†c WacW

†cb

)

, m2
1/2 =

(

W †acWcb 0

0 WacW
†cb

)

(4.3)

3A more complete discussion of these issues, for backgrounds where a simpler worldsheet CFT description

is available, will appear in [38]. A general discussion on the introduction of O-planes in generic Calabi-Yau

geometries will appear in [39].
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and plug them into the famous 1-loop Coleman-Weinberg result. The eigenvalues of both

the fermionic and the bosonic mass square matrices can be computed analytically. In

this model φ22 remains massless at tree level and its Fermi partners do too. The other 8

eigenvalues split in pairs as follows. The bosonic ones are given by

|m44|2 +
1

2
(|φ22|2 + |m24|2±|m22|2)±′ 1

2

√

(|φ22|2−|m24|2 ± |m22|2)2+4|m44φ
†
22+m†

44m24|2 ,

(4.4)

with the ± and ±′ standing for two independent sign choices. The fermionic ones are

given by the same expression as the bosonic ones, save that we formally set m22 = 0 (the

fermionic sector does not talk directly to the F-term).

If we set m24 = 0 we obtain the classic O’Raifeartaigh result for the one-loop energy,

i.e.

E1 =
Nc

32π2
|m22|4

(

y−2(1 + y)2log(1 + y) + y−2(1 − y)2log(1 − y) + 2log

( |m44|2
Λ2

))

,

(4.5)

where we have defined y = |m22

m44
|2 and Λ is the UV cutoff. In this case, φ22 stabilizes around

zero.

When m24 6= 0, the analytical form of the one-loop energy is not very illuminating.

However it is reasonable to expect that φ22 will pick up a tadpole around zero, so that its

vacuum expectation value is displaced to a non-zero value. Moreover, the size of the VEV

is directly controlled by m24, as they enter almost symmetrically in the expressions for the

eigenvalues. This is confirmed by a numerical analysis, which also shows the existence of

tachyons when m24 is too close to or larger than m44. Indeed, one might have guessed that

in this range some dangerous mixings can occur.

Let us remark at this stage on a possibility which could have been considered. We

could have actually tried to generate the higher masses like m44 dynamically in the same

way as the lower ones, m22. That would be simply implemented in a 5-node quiver with

ranks Nf − Nc at the 4th and 5th node. The model would be very similar to the above,

except that every O’Raifeartaigh model would have now 1+4(Nf −Nc) fields. If the masses

were dynamical, one would have a sum of Nf − Nc contributions like (the generalization

to m24 6= 0 of) eq. (4.5). The latter potential attracts all of the higher masses to smaller

values. However one can see that the deformed moduli space constraint is not sufficient in

this case to stabilize them. Indeed, in the dominant contribution (the log |m44|2 piece), the

constraint gives trivially a constant. The rest of the potential asymptotes to a constant

for very large m44. Hence, it will always be favorable to bring down some masses while

sending the other(s) to infinity. This is the reason why we cannot really access the full IR

free region Nc + 1 ≤ Nf < 3
2
Nc of SQCD in this class of models.

4.1 Stabilization of baryonic directions

At this stage, we have seen that as long as we can be on the mesonic branch at node 1,

we will successfully obtain a model of metastable supersymmetry breaking with no small

parameters added by hand.
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An important question now arises, however. Assuming we are working in the regime

hΛ2
1 < m, the energy of the SUSY breaking vacuum is given by

V ∼ Nc h2Λ2
3 Λ4

1 , (4.6)

since it arises by summing the masses squared of the Nc lightest flavors of the SU(Nc)

gauge group at node 3 [8]. The quantum moduli space constraint for the mesons M22 is

really

det M22 − BB̃ = Λ2Nc

1 . (4.7)

So, at least naively, it appears that by relaxing the mesonic VEVs and turning on B, B̃,

one can lower the vacuum energy to zero, destabilizing the SUSY breaking vacuum. It

is conceivable that the Kähler potential (which is not computable) introduces a barrier

that prevents such relaxation, but confidence in the construction would be considerably

enhanced if additional superpotential terms were present which prevent the baryons from

‘turning on’ when one expands around the point (2.3).

We now begin estimating the leading B, B̃ mass matrix by expanding the potential

around the would-be non-supersymmetric vacuum. To do so, we assume a canonical Kähler

potential. We consider this is reasonable, since both potential instabilities and stabilizing

effects arise under this assumption. The leading off-diagonal term is

V,BB̃ = V,B̃B = −h2 Λ2
3/Λ

2Nc−4
1 . (4.8)

This contribution appears at tree-level and favors the condensation of baryons as discussed

above.

However, there are several further terms in the (super)potential which impart diagonal

terms in the mass matrix, and overwhelm the tachyonic contribution (4.8) for reasonable

choices of parameters. One source of such a term is the tree-level coupling of φ22 in (2.5).

This will in fact turn out to be the dominant effect stabilizing B, B̃ at zero. For complete-

ness, we also include the sub-dominant effect caused by the stringy instantons discussed in

the previous section.

Putting (3.4) together with (2.5), we can check for stability of the mesonic branch

VEVs (2.3) as follows. Assume the M22 matrix is diagonal, with equal eigenvalues given

by x. x is then determined by the deformed quantum moduli space constraint of the node

1 gauge theory to be

x2Nc = Λ2Nc

1 − BB̃ . (4.9)

We could impose this constraint by adding a Lagrange multiplier λ1 to the superpotential,

multiplying the constraint equation. Then, subject to the constraint, we should minimize

the potential

V = Λ2
1 |hΛ3 φ22 + λ1x

Nc−1|2 + Λ2Nc−2
1 |λ1B + c1B|2 + Λ2Nc−2

1 |λ1B̃ + c1B̃|2 , (4.10)

where the first term arises from |Fx|2, the second term from |FB̃ |2, and the third from

|FB |2, and we have redefined c1 = c′ e−Area′ with respect to (3.4).
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Equation (4.10) only contributes to the diagonal

V,BB = V,B̃B̃ =
2

Λ2Nc+2
1

(c1Λ
2Nc

1 − hΛ2
1Λ3φ22)

2 . (4.11)

From (4.11) we can obtain the leading diagonal terms in the matrix of second

derivatives of the potential. The leading contribution is a non-zero expectation value

φ22 ∼ m24 = hΛ2
3. The net result is

V,BB = V,B̃B̃ = h4Λ6
3/Λ

2Nc−2
1 . (4.12)

Both h and the instanton coefficient c1 are suppressed by M∗
s , as h ∼ M∗−1

s and

c1 ∼ M∗3−2Nc

s . (There is also a suppression by the volume of the curve representing node

6 for the instanton, but since this effect plays no role in our theory as the φ22 VEV already

stabilizes the baryons of node 1, we can take that volume to be anything ≥ O(1). For

simplicity we’ve chosen O(1) here). The only consistency requirement on the relevant

scales is then that M∗
s > Λ3.

The eigenvalues of the matrix of second derivatives of the potential are VBB ± VBB̃ .

Then, we are free of tachyons provided that VBB ≥ |VBB̃ |. From (4.8) and (4.12) we

conclude the conditions for stability of the baryonic directions are

(Λ1/Λ3) < (Λ3/M
∗
s ) (4.13)

We see that we can always satisfy the above inequality, as well as the ones coming

from the hierarchy of mass scales in the low-energy model (as in e.g. [27]), by imposing the

following hierarchy

Λ1 ≪ Λ3 < M∗
s and m < Λ3 . (4.14)

As discussed previously, we also need m to satisfy the bound (2.8).

To summarize, we have checked that the potential baryonic instability is cured. To do

this, the one-loop generated VEV of φ22 is enough. On the other hand, to generate m, a

crucial role was played by an additional term in the superpotential, generated by a string

instanton. This makes our model a bona-fide version of SQCD with dynamically generated

exponentially small quark masses, and allows it to stably display the related metastable

vacua.

5. Lifetime of the meta-stable vacuum

In this section we study the possible decay channels for our non-supersymmetric ISS-like

vacuum.

As reviewed in section 2, there is a SUSY vacuum where the mesons of node 3 acquire

VEVs, which in turn are fixed by the VEVs of the mesons of node 1. This is what we

refer to as the mesonic branch, and is the usual SUSY vacuum of SQCD, as considered

e.g. in [8]. In addition to this SUSY vacuum, there is also another direction of possible

decay, which is precisely the one discussed in the previous section. Along this direction,

the baryons of node 1 acquire VEVs, and we are essentially led to an SQCD at node 3
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with Nc massless and one massive flavors. By standard arguments used when discussing

the deep IR of cascading quivers, one can see that after a Seiberg duality on node 3, the

quiver reduces to SQCD with one flavor at node 2. The flavor acquires a mass which is

directly related to m.

We thus want to estimate the decay rate towards these two (classes of) vacua. We do

this by estimating the bounce action in the following form, using the triangular approxi-

mation [40]

S ∼ (∆Φ)4

∆V
, (5.1)

where ∆Φ is roughly the width of the barrier while ∆V is its height. We will see below

that we do not need to be more precise, since we are really interested in lower bounds for

the bounce action anyway. If we can tune these lower bounds to be large enough, we can

be confident that decay through tunneling is suppressed and meta-stability is not affected.

Let us first consider decay towards the mesonic branch SUSY vacua. Here ∆V is

readily evaluated to be of the order of (4.6), since the energy of the metastable state and

the peak only differ by a numerical factor. To estimate ∆Φ, we first note that, as in [8],

the fields which have the biggest variation are the mesons of node 3. In the SUSY vacuum,

their VEVs are given by

φ22 = Λ3

(

m

Λ3

)
1

Nc

, φ44 = Λ3
hΛ2

1

m

(

m

Λ3

)
1

Nc

. (5.2)

It is obvious from the above that φ22 ≫ φ44 for the range of parameters discussed in the

previous sections. Moreover, recall that in the metastable state φ22 had a VEV of the order

of hΛ2
3. This is however very small with respect to the VEV it has in the SUSY vacuum,

since we assume that hΛ3 = (Λ3/M
∗
s ) ≪ 1. We can then identify ∆Φ with the VEV of φ22

listed above.

Putting all together, we have the following estimate for the bounce action towards the

mesonic branch

Smesonic ∼
(

m

Λ3

)
4

Nc

(

Λ3

Λ1

)4 (

M∗
s

Λ3

)2

. (5.3)

Every factor in the expression above is (much) greater than one, and we thus conclude that

decay towards the mesonic branch is highly suppressed.

As for the decay towards the baryonic branch of node 1, let us provide the most

conservative estimate. The field which varies the most along the path is taken to be a

representative baryon B. Its variation, after the field has been canonically normalized, is

taken to be ∆Φ ∼ Λ1. Note that since Λ1 is the smallest scale in the game, this is really

the most adverse situation. As for ∆V , we can take (4.12) and plug in the maximal VEV

of the baryons B ∼ ΛNc

1 , so that we get ∆V ∼ h4Λ6
3Λ

2
1. (Note that this ∆V is much larger

than the energy of the metastable vacuum.) The bounce action is thus

Sbaryonic ∼
(

Λ1

Λ3

)2 (

M∗
s

Λ3

)4

. (5.4)
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Consistently with the inequality (4.13), the above bounce action can be made parametri-

cally large, and thus also the decay towards the baryonic branch is suppressed.

In this crude estimate, it seems that the latter decay channel is the dominant one. To

conclude that this is really so would require a more serious investigation of the potential and

tunneling path. In any case we see that the simplest estimates indicate that the apparent

decay channels are parametrically suppressed.

6. The string dual description

As we have seen, the quiver gauge theory we have analyzed in previous sections admits

a number of supersymmetric as well as metastable non-supersymmetric vacua. A natural

question is whether is it possible to provide a supergravity/string dual description of such

vacua. The well defined type IIB string embedding of our model outlined in section 1.1

makes this a realistic task.

6.1 On the gravity dual

In what follows we sketch the structure of only those vacua which are most relevant to our

story: the ISS-like vacua and their supersymmetric counterparts, i.e. the vacua belonging

to the mesonic branch. The discussion is very similar to the one for the Z2 conifold quotient

presented in our previous work [25], to which we refer for details.

In the present construction a crucial role is played by the presence of an additional

fractional brane, that we have to treat as a probe since its backreaction cannot be captured

classically (by definition, we cannot take the large N limit for a single brane). Moreover, a

second equally crucial ingredient is that there is a mass term constraining the position of

this probe brane. Indeed, it can be checked that for m = 0 both classes of supersymmetric

vacua become runaway. Again, the mass term is the product of a stringy instanton which

is not expected to backreact on the classical geometry in any simple manner.

Below, we will take the pragmatic point of view that, because of the mass term, we can

roughly integrate out the effect of the additional probe brane. We are then left with the

same gravity dual as discussed in [25], albeit embedded in a higher singularity. The effects

of the additional fractional brane presumably show up as (important) 1/N corrections to

the geometry.

Our brane system can be embedded into a weakly curved gravity dual background by

adding (a large number of) regular D3 branes. One can easily show that the resulting

fractional/regular brane system enjoys a duality cascade, i.e. a non-trivial RG-flow along

which the effective number of regular branes diminishes (in units of Nc, in this case). Hence,

choosing N = kNc regular D3 branes (with k as large as we wish), the IR field theory at

the end of the cascade will be the quiver field theory we have been studying. The number

of cascade steps k will just control the final warp factor in the IR region of the gravity

dual.

As discussed in section 2, the region of the moduli space where an effective massive

SQCD SU(Nc) theory emerges is along the mesonic branch of node 1. This corresponds to
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having the Nc N = 2 branes at a distance (det M22)
1/Nc ∝ Λ2

1 along C, the complex direc-

tion parametrizing the VEV’s of the adjoint scalar of the corresponding effective SU(Nc)

N = 2 vector superfield. We will refer to the N = 2 fractional branes as wrapped D5’s,

throughout this section.

The Z3 orbifold of the conifold4 is described by the following equation in C
4

x3y3 = uv . (6.1)

As already discussed in section 1.1, this geometry supports three independent complex

deformations, leading to the completely smooth geometry

3
∏

i=1

(xy − ǫi) = uv . (6.2)

Consequently, there are three non trivial 3-cycles Ai whose minimal size is given by ǫi

∫

Ai

Ω = ǫi . (6.3)

In our particular case we would like to consider the case where only two of the three 3-cycles

are blown-up, and moreover they have the same size [25]

(xy − ǫ)2xy = uv . (6.4)

This deformation is triggered by the Nc deformation branes we have at node 3. The

geometry above has a C
2/Z2 line of singularities (also called A1-singularities, not to be

confused with the label of the 3-cycles above) at the locus xy = ǫ, u = v = 0. Moreover, it

has an innocuous conifold singularity at x = y = u = v = 0.

We construct the geometrical dual to the supersymmetric vacua of our theory, which

were discussed at the beginning of section 2, in the following way. After a geometric

transition, we expect the brane at node 3 to transmute and turn into flux,

∫

A
G3 = Nc ,

∫

B
G3 =

i

g s

k (6.5)

where A is the compact 3-cycle absorbing the RR flux of the original branes, B its non-

compact dual, and k is the number of duality cascade steps (and can be naturally taken to

be very large). As already noticed, the D5’s wrapping the C
2/Z2 singularity are instead

explicitly present in the dual geometry, lying somewhere along the mesonic branch. Finally,

the single deformation brane at node 4 cannot transmute, and remains as a probe at the

remaining conical singularity, which we expect to be slightly deformed by the instanton

discussed in section 3. It can be checked that the above set up has the same charges and

supersymmetric moduli space as our theory.

4As already mentioned, we can embed the same 4-node quiver in a ZN orbifold with N > 3. A reason

to go to larger N might be to achieve the desired range of scales, since there would be more geometrical

quantities to tune.
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We now move to the description of the metastable state. As originally discussed in [3],

and recently applied in similar contexts by many authors, a natural way to construct

metastable non-supersymmetric vacua is by adding anti-branes. The positive vacuum en-

ergy is proportional to the number of such branes. The fact that the vacuum energy is

exponentially small is due, in the gravity dual, to the warping of the anti-brane tension.

In order for these configurations to describe states in the same gauge theory, one should

check that the supergravity charges, at infinity, are unchanged. In the present context this

can be achieved by adding Nc anti-D3 branes and simultaneously jumping the NS fluxes

by one unit
∫

B
G3 =

i

g s

k −→
∫

B
G3 =

i

g s

(k + 1) , (6.6)

so as to leave the full D3 brane charge untouched.5 It is a nice check of our proposal that it

is only by adding Nc such branes (no more, no less), hence providing the correct energetics

for the ISS metastable vacua, that we can leave the global charges at infinity untouched,

and hence describe non-supersymmetric states in the same gauge theory. Notice that as

far as fluxes are concerned, this shift corresponds to moving one step down in the cascade.

That this is the case, will become apparent when we discuss the type IIA T-dual description

of this system in the next subsection.

Due to the F5 background in the gravity solution (dual to the large number of D3

branes present in the cascade), the anti-D3 branes are attracted to the tip of the geometry.

The metastable configuration presumably has all anti-D3s absorbed and dissolved as gauge

flux into the Nc D5 branes
∫

C

F = −Nc , (6.7)

where C is the 2-cycle which the Nc D5s wrap. This flux, via the Chern-Simons coupling in

the DBI action of the D5 branes, accounts for the Nc units of anti-brane charge. Stability

against decay through the Myers effect can be argued as in [25], but of course a more

detailed study would be valuable.

A natural question is to ask whether one of the anti-branes can annihilate with the

deformation brane associated to node 4, which is sitting at the conifold singularity. In

the next subsection we will provide a simple argument as to why this is energetically

disfavoured.

The supersymmetric vacua corresponding to the baryonic branch were discussed in [25].

It is not immediately clear how one would directly relate them to the metastable states.

6.2 Type IIA dual

In this section we study the Type IIA dual configurations describing our model. These

constructions were first introduced in [41]. This approach provides a vivid picture of how

the anti-branes arise in the non-supersymmetric state.

figure 4 shows the type IIA T-dual brane configuration for our 4 node quiver for

〈M22〉 = m = 0.

5Let us remind the reader that the full D3 charge is Q3 =
R

H3 ∧ F3 + N − N , where N and N are the

net number of D3 and anti-D3 branes, respectively.
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Figure 4: Type IIA configuration for the electric theory with 〈M22〉 = m = 0.

cN Nc

4,5

6

8,9

11

NS

NS’

NS

NS’

NS

NS’

Figure 5: Type IIA configuration for the magnetic theory.
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8,9

6
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1
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NS

〈M22〉

Figure 6: Type IIA configuration for the electric theory with non-zero 〈M22〉 and m.

Performing a Seiberg duality on the middle node corresponds to moving the second

NS brane and second NS’ brane across each other [42]. In the process, some anti D4 branes

are generated in the middle interval, but they are annihilated against D4 branes sitting on

top of them. The result is shown in figure 5.

A non-zero VEV for 〈M22〉 in the electric theory corresponds to moving the D4-branes

stretched between the first and second NS-brane in figure 4 in the 45 directions. Similarly,

the mass m is mapped to a displacement of the third NS brane together with the D4-branes

that stretch from it to the second NS’-branes in 89. This is shown in figure 6.

If we now perform the Seiberg duality, we obtain the configuration in figure 7. The

anti-D4’s are not annihilated, since they are now displaced from the D4s due to the meson

VEVs (following the discussion in section 3, 〈M22〉 is stabilized at tree level).

figure 7 shows that the avatar of SUSY breaking in the ISS vacuum is explicit un-

annihilated anti D4 branes. The failure to annihilate these branes is a direct consequence

of the meson VEVs and m (the dynamically generated masses). Relative to the IIB story

we described in the previous subsection, this IIA configuration is an intermediate picture

between the state with explicit anti-D3 branes and the (final) state where they are dissolved
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Figure 7: Type IIA configuration for the magnetic theory with non-zero 〈M22〉 and m. Anti-D4

branes are indicated in red.
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Figure 8: The type IIA configuration once the anti-D4 branes has been dissolved into the D4’s as

gauge flux.

within the Nc D5s at the A1 singularity.

Collapsing D4 and anti D4-branes as much as possible, we obtain figure 8 for the IIA

picture of the ISS vacuum. We have labeled the NS branes to simplify the discussion.

We have annihilated the anti-D4’s against D4’s between NS1 and NS2 (and not NS2’ and

NS3) because, since |h〈M22〉| < m, this clearly produces a lower energy configuration.

Notice that the objects the gauge flux (represented here by the anti-D4’s) combines with

are precisely D4 branes stretched between the parallel NS1 and NS2. The resulting tilted

D4 branes are dual to the D5/anti-D3 bound states of the IIB configuration.

In this type IIA setting it is also easy to see how the configuration in figure 7 is related

to the addition of anti D3-branes and jumping fluxes in the gravity dual, as described in

section 6.1. An anti-D3 brane maps to an anti-D4 brane wrapping the entire x6 circle in

Type IIA. We can form such a complete anti-D4 by adding D4/anti-D4 pairs to all intervals

with the exception of the one between the second NS’ and second NS. Grouping D4 branes

in each interval together, we are left with the configuration in figure 9. It corresponds to

Nc full anti-D4 branes (T-dual to Nc anti-D3 branes) and the number of D4 branes in each

interval corresponds to moving up one step in the cascade from the magnetic theory (the

last step). Increasing the cascade by one step is exactly how increasing the NS flux by one

unit manifests in this context. This matches nicely with our previous type IIB description

of the metastable non-supersymmetric vacua.

7. Conclusions

We have presented a D-brane construction that engineers metastable vacua closely related

to those of [8]. The construction has some interesting conceptual features and some inter-
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Figure 9: The ISS vacuum configuration of figure 7 can be interpreted as adding Nc anti-D3 branes

and moving down one step in the cascade.

esting features for model building.

Conceptually, the most interesting thing about the construction is that it readily admits

a IIB gravity dual description (in the general framework of AdS/CFT). The metastable

states cannot be directly followed from weak ’t Hooft coupling to strong ’t Hooft coupling,

but they quite plausibly match on to strong-coupling analogues where the SUSY breaking

is well described by the presence of anti-D3 branes, and a picture very similar to the one

in [3]. In addition, the quivers that arise in our construction are some of the simplest cases

where the new string instanton effects explored in many recent works make important

contributions.

One may also wish to construct pseudo-realistic models of SUSY breaking and/or

direct mediation using quiver gauge theories. In this case, our model has two virtues: the

small dynamical masses of the ISS model are explained naturally without any fine tuning

of parameters (as could also be done by retrofitting [10]), and the problematic R-symmetry

which could forbid gaugino masses is lifted by the extra terms that automatically appear

in our superpotential. We note that because the R-symmetry is broken by an irrelevant

operator suppressed by the high scale M∗
s , and because for metastability it is necessary to

take M∗
s somewhat higher than the SUSY-breaking scale, it is likely that in real model-

building applications, our theory would produce low gaugino masses. Given the lower

bounds on gaugino masses, this would necessitate heavy squarks and sleptons, resulting in

the need for a (mild) tune to obtain a reasonable Higgs mass.

It would be very interesting to study the gravity dual geometry in further detail. While

there aren’t BPS or protected quantities that are guaranteed to match between weak and

strong coupling, one may find interesting patterns of qualitative agreement between the

two classes of non-supersymmetric states. Conversely, some quantities (e.g. lifetimes or

barrier heights) may change in a striking way upon extrapolation in gsN .

Acknowledgments

We would like to thank O. Aharony, F. Bigazzi, M. Buican, G. Ferretti, B. Florea, A.

Lerda, N. Saulina, N. Seiberg and A. Uranga for helpful discussions. R.A. and M.B.

are partially supported by the European Commission FP6 Programme MRTN-CT-2004-

005104, in which R.A is associated to V.U. Brussel. R.A. is a Research Associate of the

Fonds National de la Recherche Scientifique (Belgium). The research of R.A. is also sup-

– 19 –



J
H
E
P
0
6
(
2
0
0
7
)
0
1
7

cN
Nc cN

NccNNc

1

1

O6

O6

NS1
NS2

NS3
NS1’

NS2’

Figure 10: Type IIA T-dual configuration for an embedding of our model in an orientifold of

a ZZ5 orbifold of the conifold. The image NS-branes are indicated in blue. The ED1 branes are

T-dualized to ED0s, which are shown in magenta.

ported by IISN - Belgium (convention 4.4505.86) and by the “Interuniversity Attraction

Poles Programme –Belgian Science Policy”. M.B. is also supported by Italian MIUR un-

der contract PRIN-2005023102 and by a MIUR fellowship within the program “Rientro dei

Cervelli”. S.F. is supported by the DOE under contract DE-FG02-91ER-40671. The re-

search of S.K. was supported in part by a David and Lucile Packard Foundation Fellowship,

the NSF under grant PHY-0244728, and the DOE under contract DE-AC03-76SF00515. S.

F. would like to thank the Galileo Galilei Institute for Theoretical Physics for hospitality

while this work was being completed. S.K. similarly acknowledges the kind hospitality of

the International Centre for Theoretical Physics.

A. Fermionic zero modes and orientifolds

We now briefly explain how it is possible to project out two fermionic zero modes on each

instanton by embedding our model in an orientifold.

The most intuitive way of visualizing the orientifold is by means of the Type IIA T-dual

setup, along the lines of [43], to which we refer the reader for further details. Everything

in this construction can be mapped into a type IIB set-up.

The simplest embedding of our model is shown in figure 10. It corresponds to removing

the last NS’ in figure 4 and adding the orientifold images. The O-plane extends along 01237

and is at 45 degrees with respect to the 45 and 89 planes. Such an O-plane maps NS to NS’

branes and vice versa. Before orientifolding, the corresponding geometry is a ZZ5 orbifold

of the conifold.

If the O-plane extended along 45 or 89, the images of NS1 and NS3 would also be

NS branes. We have not chosen this possibility because the instantons stretched between

parallel NS-branes (in type IIB, this corresponds to the instantons wrapping IP1’s in A1 sin-

gularities) would have additional adjoint fermionic zero modes, some of which also survive

the orientifold projection.
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We take the charge of the O-plane to be positive so that the gauge group on the instan-

tons is O(1). Two of the fermionic zero modes are projected to the symmetric represen-

tation and the other two to the antisymmetric representation of O(1). The antisymmetric

representation of O(1) vanishes, so this orientifold projects out precisely two fermionic zero

modes.

Only the cycles wrapped by the instantons are affected by the orientifold, thus our

discussion of the IR applies without changes. The cascade and the corresponding super-

gravity solution section 6.1 require some small modifications in the presence of orthogonal

gauge groups/orientifold planes, probably along lines similar to [44].
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